Si-substituted AIPO₄-5 by Silanation with SiCl₄

V. R. Choudhary,* M. Y. Pandit, and S. D. Sansare

Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India

Reaction of gaseous SiCl₄ with crystalline molecular sieve AIPO₄-5 at 300-600 °C has given Si-substituted AIPO₄-5 without significantly affecting its crystal structure.

AlPO₄-5 belongs to a novel class of crystalline microporous aluminium phosphate phases introduced by Wilson *et al.*¹ More recently Lok *et al.*² have reported the synthesis of SAPO-5, which is a crystalline microporous (channel or pore diameter 0.8 nm) silicon aluminium phosphate of similar structure to AlPO₄-5 and shows interesting, unique properties of potential use in catalytic, adsorptive, and ion-exchange applications. We report here our initial results on the reaction of gaseous SiCl₄ with AlPO₄-5 at 300–600 °C, to form SiAlPO₄-5.

The preparation and characterization of AlPO₄-5, the evaluation of its acidity and of its adsorptive and catalytic properties, have been described in our earlier papers.^{3,4} The reaction of SiCl₄ with AlPO₄-5 was carried out in a conventional flow tubular quartz reactor (internal diameter 1 cm) by passing SiCl₄ vapour and nitrogen (moisture-free) over particles (0.15 mm) of AlPO₄-5 packed between quartz wool plugs, at different temperatures and concentrations of SiCl₄ under atmospheric pressure. The chlorides of Al and P formed in the reaction were absorbed from the reactor effluents in water and quantitatively determined by chemical means. After the reaction, the resulting silicon aluminium phosphate was heated in a flow of pure nitrogen (50 cm³ min⁻¹) at 500 °C for 2 h to remove traces of adsorbed chlorides of Al and P. The acidity of the silicon aluminium phosphate samples was determined by measuring the chemisorption of pyridine at 400 °C using a g.c. pulse technique.⁵ The catalytic activities/ selectivities of the silicon aluminium phosphate in iso-octane cracking, o-xylene isomerization, and ethanol-to-aromatics conversion reactions have been determined in a pulse microreactor³ (internal diameter 4 mm) connected to a gas chromatograph using the following conditions: catalyst, 0.1 g; N_2 flow rate, 60 cm³ min⁻¹; temperature, 400 °C; pressure, 180 kPa; and pulse size, 2.0 μ l. Figure 1 shows how the replacement of Al by Si depends on temperature and pressure. Both Al and P are replaced, in the ratio Al : $P \sim 2.6 \pm 0.5$: 1.

The surface and catalytic properties of the SiAlPO₄-5 obtained under various conditions are shown in Table 1. The powder X-ray diffraction patterns and surface areas of these

SiAlPO₄-5 samples are very similar to those of the parent ALPO₄-5. These facts indicate that the crystal structure of AlPO₄-5 remained intact during its reaction with SiCl₄, even at 600 °C. The increase in the catalytic activity of the SiAlPO₄-5 in the cracking of iso-octane, *o*-xylene isomerization, and the formation of aromatics in the ethanol conversion reaction, is consistent with the increase in strong acid sites created by the SiCl₄ treatment of the AlPO₄-5. Figure 2 shows

Figure 1. Substitution of Al by Si in AlPO₄-5 by reaction with SiCl₄. \bigcirc 300 °C; \spadesuit 400 °C; \triangle 500 °C [*P*(SiCl₄) 65 torr; GHSV, 5590 h⁻¹]; \blacktriangle 500 °C [*P*(SiCl₄) 160 torr; GHSV 2270 h⁻¹]. 1 Torr = 133.322 Pa.

Reaction conditions							o-Xylene isomerization		
<i>T/</i> ℃	Partial pressure P(SiCl ₄)/torr	GHSV ^a / h ⁻¹	Reaction time/ h	Surface area/ m ² g ⁻¹	Strong acid sites/ mmol g ⁻¹	Conversion of iso-octane/ %	Conversion of o-xylene/ %	Selectivity for <i>p</i> - and <i>m</i> -xylene/%	Concn. of aromatics ^b / (wt%)
Untreated AlPO₄-5				312	< 0.01	<1.0	12.6	79.7	3.7
300	65	5590	8	299	0.04	4.2	29.3	58.3	11.2
400	65	5590	8	293	0.07	4.8	43.7	49.6	20.0
500	65	5590	8	303	0.19	5.0	42.1	52.7	22.1
600	65	5590	8	292	0.25	5.8	44.1	46.4	23.8
500	160	2270	4	294	0.23	5.2	43.3	50.1	25.2
500	290	1120	4	297	0.70	16.4	47.4	53.5	26.6

Table 1. Surface and catalytic properties of SiAlPO₄-5 obtained by treating AlPO₄-5 with SiCl₄ at different conditions

^a GHSV = gas hourly space velocity at standard temperature and pressure (S.T.P.), *i.e.*, volume of gaseous mixture of SiCl₄ and N_2 per volume of AlPO₄-5 per h. ^b Concentration of aromatics, formed during ethanol conversion, wt% of total hydrocarbons formed.

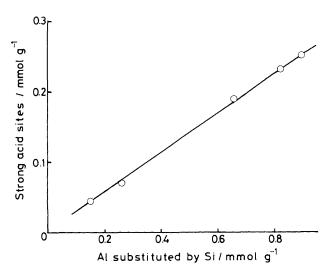


Figure 2. Dependence of strong acid sites created on amount of Al substituted by Si in AlPO₄-5.

that the strong acid sites (measured in terms of pyridine chemisorbed at 400 °C) of the SiAlPO₄-5 increase almost linearly with the amount of Al substituted by Si in the AlPO₄-5.

The results thus show that SiAlPO₄-5 having high acidity and catalytic activity can be obtained from AlPO₄-5 by reaction with SiCl₄ at 300—600 °C, without collapse of the crystal structure. During the silanation, both Al and P in AlPO₄-5 are partly substituted by Si.

Received, 28th November 1988; Com. 8/04702B

References

- S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, J. Am. Chem. Soc., 1982, 104, 1146; ACS Symp. Ser., 1983, 218, 79.
- 2 B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen, J. Am. Chem. Soc., 1984, 106, 6092.
- 3 V. R. Choudhary and D. B. Akolekar, J. Catal., 1987, 103, 115.
- 4 V. R. Choudhary, D. B. Akolekar, A. P. Singh, and S. D. Sansare, J. Catal., 1988, 111, 23.
- 5 V. R. Choudhary and V. S. Nayak, Appl. Catal., 1982, 4, 31.